已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.
(1)求证:△ACB∽△CDB;
(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.
已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.
(1)求证:△ACB∽△CDB;
(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.
(1)证明:∵直线CP是⊙O的切线,
∴∠BCD=∠BAC,
∵AB是直径,
∴∠ACB=90°,
又∵BD⊥CP
∴∠CDB=90°,
∴∠ACB=∠CDB=90°
∴△ACB∽△CDB;
(2)解:如图,连接OC,
∵直线CP是⊙O的切线,∠BCP=30°,
∴∠COB=2∠BCP=60°,
∴△OCB是正三角形,
∵⊙O的半径为1,
∴S△OCB=,S扇形OCB=
=
π,
∴阴影部分的面积=S扇形OCB﹣S△OCB=π﹣
.