已知函数f(x)=|x+a﹣1|+|x﹣2a|.
(Ⅰ) 若f(1)<3,求实数a的取值范围;
(Ⅱ) 若a≥1,x∈R,求证:f(x)≥2.
已知函数f(x)=|x+a﹣1|+|x﹣2a|.
(Ⅰ) 若f(1)<3,求实数a的取值范围;
(Ⅱ) 若a≥1,x∈R,求证:f(x)≥2.
【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.
【分析】(Ⅰ)通过讨论a的范围得到关于a的不等式,解出取并集即可;(Ⅱ)基本基本不等式的性质证明即可.
【解答】解:(Ⅰ) 因为f(1)<3,所以|a|+|1﹣2a|<3.
①当a≤0时,得﹣a+(1﹣2a)<3,
解得,所以
;
②当时,得a+(1﹣2a)<3,
解得a>﹣2,所以;
③当时,得a﹣(1﹣2a)<3,
解得,所以
;
综上所述,实数a的取值范围是.
(Ⅱ) 因为a≥1,x∈R,
所以f(x)=|x+a﹣1|+|x﹣2a|≥|(x+a﹣1)﹣(x﹣2a)|=|3a﹣1|=3a﹣1≥2.