如图,在四边形ABCD中,AB//CD,∠B=∠ADC,点E是BC边上的一点,且AE=DC.
(1)求证:△ABC≌△EAD ;
(2)如果AB⊥AC,求证:∠BAE= 2∠ACB.
如图,在四边形ABCD中,AB//CD,∠B=∠ADC,点E是BC边上的一点,且AE=DC.
(1)求证:△ABC≌△EAD ;
(2)如果AB⊥AC,求证:∠BAE= 2∠ACB.
证明:(1)∵AB∥CD,
∴∠BAC=∠DCA.
又∠B=∠ADC,AC=CA,
∴△ABC≌△CDA(AAS)
∴BC=AD,AB=DC,∠ACB=∠CAD.
又 AE=DC,AB=DC,
∴AB=AE.
∴∠B=∠AEB.
又∠ACB=∠CAD,
∴AD∥BC,
∴∠AEB=∠EAD.
∴∠B=∠EAD.
在△ABC与△EAD中,
(2)过点A作AH⊥BC于H.
∵AB=AE,AH⊥BC.
∴∠BAE=2∠BAH.
在△ABC中,∵∠BAC+∠B+∠ACB=180°,
又 AB⊥AC,
∴∠BAC=90°.
∴∠B+∠ACB=90°.
同理:∠B+∠BAH=90°.
∴∠BAH=∠ACB.
∴∠BAE=2∠ACB.