(1)求证:(a
-b)⊥c;(2)若|ka
+b+c|>1,求实数k的取值范围.
(1)求证:(a
-b)⊥c;(2)若|ka
+b+c|>1,求实数k的取值范围.
解析:(1)∵|a
|=|b|=|c|=1,且a与b,b与c,c与a夹角均为 60°.∴(a-b)·c=a·c-b·c=|a||c|cos120°-|b||c|cos120°=0.∴(a-b)⊥c.(2)∵|ka+b+c|>1,∴(ka+b+c)2>1,即k2a2+b2+c2+2ka·b+2ka·c+2b·c >1. ∵a·b=b·c=a·c=cos120°=-