甲、乙两人玩一种游戏:在装有质地、大小完全相同,在编号分别为1,2,3,4,5,6的6个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数则甲赢,否则乙赢.
(1)求甲赢且编号和为8的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.
甲、乙两人玩一种游戏:在装有质地、大小完全相同,在编号分别为1,2,3,4,5,6的6个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数则甲赢,否则乙赢.
(1)求甲赢且编号和为8的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.
解:(1)设“两个编号和为8”为事件A,则事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,又甲、乙两人取出的球的编号的基本事件共有6×6=36(个)等可能的结果,故P(A)=.
(2)这种游戏规则是公平的.设甲胜为事件B,乙胜为事件C,则甲胜即两编号和为偶数所包含的基本事件数有18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3, 3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6).
所以甲胜的概率P(B)==
,乙胜的概率P(C)=1-
=
.
因为P(B)=P(C),所以这种游戏规则是公平的.