已知函数y=f(x)是定义在R上的偶函数,对于x∈R,都有f(x+4)=f(x)+f(2)成立,当x1,x2∈[0,2]且x1≠x2时,都有<0,给出下列四个命题:
①f(﹣2)=0;
②直线x=﹣4是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[4,6]上为增函数;
④函数y=f(x)在(﹣8,6]上有四个零点.
其中所有正确命题的序号为 .
已知函数y=f(x)是定义在R上的偶函数,对于x∈R,都有f(x+4)=f(x)+f(2)成立,当x1,x2∈[0,2]且x1≠x2时,都有<0,给出下列四个命题:
①f(﹣2)=0;
②直线x=﹣4是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[4,6]上为增函数;
④函数y=f(x)在(﹣8,6]上有四个零点.
其中所有正确命题的序号为 .
①②④ .
【考点】命题的真假判断与应用.
【专题】数形结合;转化法;简易逻辑.
【分析】①令x=﹣2,可得f(﹣2)=0,从而可判断①;
②由(1)知f(x+4)=f (x),所以f(x)的周期为4,再利用f(x)是R上的偶函数,根据函数对称性从而可判断②;
③依题意知,函数y=f(x)在[0,2]上为减函数结合函数的周期性,从而可判断③;
④由题意可知,y作出函数在(﹣8,6]上有的图象,从而可判断④.
【解答】解:①:对于任意x∈R,都有f(x+4)=f (x)+f (2)成立,令x=﹣2,则f(﹣2+4)=f(﹣2)+f (2)=f(2),
即f(﹣2)=0,即①正确;
②:由(1)知f(x+4)=f (x),则f(x)的周期为4,
又∵f(x)是R上的偶函数,∴f(x+4)=f(﹣x),
而f(x)的周期为4,则f(x+4)=f(﹣4+x),f(﹣x)=f(﹣x﹣4),
∴f(﹣4﹣x)=f(﹣4+x),
则直线x=﹣4是函数y=f(x)的图象的一条对称轴,即②正确;
③:当x1,x2∈[0,2],且x1≠x2时,都有<0,
∴函数y=f(x)在[0,2]上为减函数,
而f(x)的周期为4,
∴函数y=f(x)在[4,6]上为减函数,故③错误;
④:∵f(2)=0,f(x)的周期为4,函数y=f(x)在[0,2]上为增函数,
在[﹣2,0]上为减函数,
∴作出函数在(﹣8,6]上的图象如图:
则函数y=f(x)在(﹣8,6]上有4个零点,故④正确.
故答案为.①②④
【点评】本题考查命题的真假判断与应用,着重考查函数的奇偶性、周期性、对称性及零点的确定的综合应用,属于难题.