如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( )
A.2 B.4 C.3 D.
如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( )
A.2 B.4 C.3 D.
A【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.
【解答】解:如图,连接FC,则AF=FC.
∵AD∥BC,
∴∠FAO=∠BCO.
在△FOA与△BOC中,
,
∴△FOA≌△BOC(ASA),
∴AF=BC=3,
∴FC=AF=3,FD=AD﹣AF=4﹣3=1.
在△FDC中,∵∠D=90°,
∴CD2+DF2=FC2,
∴CD2+12=32,
∴CD=2.
故选:A.
【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.