如图所示光滑管形圆轨道半径为R(管径远小于R),小球a、b大小相同,质量均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是 ( )
A.当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mg
B.当v=时,小球b在轨道最高点对轨道无压力
C.速度v至少为,才能使两球在管内做圆周运动
D.只要v≥,小球a对轨道最低点的压力比小球b对轨道最高点的压力都大6mg
如图所示光滑管形圆轨道半径为R(管径远小于R),小球a、b大小相同,质量均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是 ( )
A.当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mg
B.当v=时,小球b在轨道最高点对轨道无压力
C.速度v至少为,才能使两球在管内做圆周运动
D.只要v≥,小球a对轨道最低点的压力比小球b对轨道最高点的压力都大6mg
BD
解析: 小球在最高点恰好对轨道没有压力时,小球b所受重力充当向心力,mg=m⇒v0=,小球从最高点运动到最低点过程中,只有重力做功,小球的机械能守恒,2mgR+mv=mv2,解以上两式可得:v=,B项正确;小球在最低点时,F向=m=5mg,在最高点和最低点所需向心力的差为4mg,A项错;小球在最高点,内管对小球的支持力可以提供向心力,所以小球通过最高点的最小速度为零,再由机械能守恒定律可知,2mgR=mv′2,解得v′=2,C项错;当v≥时,小球在最低点所受支持力F1=mg+,由最低点运动到最高点,2mgR+mv=mv2,小球对轨道压力F2+mg=m,解得F2=m-5mg,F1-F2=6mg,可见小球a对轨道最低点压力比小球b对轨道最高点压力都大6mg,D项正确.