(1)求函数f(x)的单调递增区间;
(2)求曲线y=f(x)在点(1,f(1))处的切线方程.
(1)求函数f(x)的单调递增区间;
(2)求曲线y=f(x)在点(1,f(1))处的切线方程.
解:(1)∵f(x)=xex,
∴f′(x)=ex+xex=(x+1)ex.
令f′(x)>0,即(x+1)ex>0,
∵ex>0,∴x>-1.
∴函数f(x)的单调递增区间为(-1,+∞).
(2)由(1)得f′(1)=(1+1)·e=2e,f(1)=e,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-e=2e(x-1),即2ex-y-e=0.