解法一:m+n=(cosθ-sinθ+
,cosθ+sinθ),
|m+n|=![]()
=![]()
=
=2
.
由已知|m+n|=
,得cos(θ+
)=
.
又cos(θ+
)=2cos2(
+
)-1,
∴cos2(
+
)=
.
∵π<θ<2π,∴
<
+
<
.
∴cos(
+
)<0.∴cos(
+
)=-
.
解法二:|m+n|2=(m+n)2=m2+2m·n+n2=|m|2+|n|2+2m·n=(
)2+[
]2+2[cosθ(
-sinθ)+sinθcosθ]
=4+2
(cosθ-sinθ)
=4[1+cos(θ+
)]=8cos2(
+
).
由已知|m+n|=
,得|cos(
+
)|=
.∵π<θ<2π,∴
<
+
<
.
∴cos(
+
)<0.
∴cos(
+
)=-
.