



解法一:m+n=(cosθ-sinθ+,cosθ+sinθ),
|m+n|=
=
==2
.
由已知|m+n|=,得cos(θ+
)=
.
又cos(θ+)=2cos2(
+
)-1,
∴cos2(+
)=
.
∵π<θ<2π,∴<
+
<
.
∴cos(+
)<0.∴cos(
+
)=-
.
解法二:|m+n|2=(m+n)2=m2+2m·n+n2=|m|2+|n|2+2m·n=()2+[
]2+2[cosθ(
-sinθ)+sinθcosθ]
=4+2(cosθ-sinθ)
=4[1+cos(θ+)]=8cos2(
+
).
由已知|m+n|=,得|cos(
+
)|=
.∵π<θ<2π,∴
<
+
<
.
∴cos(+
)<0.
∴cos(+
)=-
.