已知函数f(x)=2x-的定义域为(0,1](a为实数).
(1)当a=1时,求函数y=f(x)的值域;
(2)求函数y=f(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x的值.
已知函数f(x)=2x-的定义域为(0,1](a为实数).
(1)当a=1时,求函数y=f(x)的值域;
(2)求函数y=f(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x的值.
解:(1)当a=1时,f(x)=2x-,任取1≥x1>x2>0,则f(x1)-f(x2)=2(x1-x2)-
=(x1-x2) .
因为1≥x1>x2>0,所以x1-x2>0,x1x2>0.
所以f(x1)>f(x2),所以f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值1,所以f(x)的值域为(-∞,1].
(2)当a≥0时,y=f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值2-a;当a<0时,f(x)=2x+,
当≥1,即a∈(-∞,-2]时,y=f(x)在(0,1]上单调递减,无最大值,当x=1时取得最小值2-a;
当<1,即a∈(-2,0)时,y=f(x)在
上单调递减,在
上单调递增,无最大值,当x=
时取得最小值2
.