已知平面上一定点C(4,0)和一定直线为该平面上一动点,作
,垂足为Q,且
.
(1)问点P在什么曲线上?并求出该曲线的方程;
(2)设直线与(1)中的曲线交于不同的两点A、B,是否存在实数k,使得以线段AB为直径的圆经过点D(0,-2)?若存在,求出k的值,若不存在,说明理由.
已知平面上一定点C(4,0)和一定直线为该平面上一动点,作
,垂足为Q,且
.
(1)问点P在什么曲线上?并求出该曲线的方程;
(2)设直线与(1)中的曲线交于不同的两点A、B,是否存在实数k,使得以线段AB为直径的圆经过点D(0,-2)?若存在,求出k的值,若不存在,说明理由.
(1)P点在双曲线上,其方程为
(2)满足题意的k值存在,且k值为
(1)设P的坐标为,由
得
(2分) ∴(
(4分)
化简得 ∴P点在双曲线上,其方程为
(6分)
(2)设A、B点的坐标分别为、
,
由 得
(7分)
,(8分)
∵AB与双曲线交于两点,∴△>0,即
解得(9分)
∵若以AB为直径的圆过D(0,-2),则AD⊥BD,∴,
即,(10分)
∴
∴
解得,故满足题意的k值存在,且k值为
.