如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈,cos22°≈
,tan22°≈0.4)
如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈,cos22°≈
,tan22°≈0.4)
(1)如图,
过点E作EM⊥AB,垂足为M.设AB为x.
Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,
在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,
tan22°=AM:ME,则5(x-2)=2(x+25),解得:x=20.即教学楼的高20m.
(2)由(1)可得ME=BC=x+25=20+25=45.
在Rt△AME中,cos22°=ME:AE.∴ME=AEcos22°,即A、E之间的距离约为48m.