经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1≤t≤30,t∈N*)的旅游人数f(t)(万人)近似地满足f(t)=4+,而人均消费g(t)(元)近似地满足g(t)=120-|t-20|.
(1)求该城市的旅游日收益W(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式;
(2)求该城市旅游日收益的最小值.
经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1≤t≤30,t∈N*)的旅游人数f(t)(万人)近似地满足f(t)=4+,而人均消费g(t)(元)近似地满足g(t)=120-|t-20|.
(1)求该城市的旅游日收益W(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式;
(2)求该城市旅游日收益的最小值.
解:(1)W(t)=f(t)g(t)= (120-|t-20|)
=
(2)当t∈[1,20]时,401+4t+≥401+2
=441(t=5时取最小值).
当t∈(20,30]时,因为W(t)=559+-4t递减,
所以t=30时,W(t)有最小值W(30)=443,
所以t∈[1,30]时,W(t)的最小值为441万元.