已知{an}是正数组成的数列,a1=1,且点(
)(n
N*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn+1=bn+
,求证:bn・bn+2<b2n+1.
已知{an}是正数组成的数列,a1=1,且点(
)(n
N*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn+1=bn+
,求证:bn・bn+2<b2n+1.
解法一:
(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以数列{an}是以1为首项,公差为1的等差数列.
故an=1+(n-1)×1=n.
(Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n.
bn=(bn-bn-1)+(bn-1-bn-2)+・・・+(b2-b1)+b1
=2n-1+2n-2+・・・+2+1
=
=2n-1.
因为bn・bn+2-b
=(2n-1)(2n+2-1)-(2n+1-1)2
=(22n+2-2n+2-2n+1)-(22n+2-2・2n+1+1)
=-5・2n+4・2n
=-2n<0,
所以bn・bn+2<b
,
解法二:
(Ⅰ)同解法一.
(Ⅱ)因为b1=1,
bn・bn+2- b
=(bn+1-2n)(bn+1+2n+1)- b![]()
=2n+1・bn+1-2n・bn+1-2n・2n+1
=2n(bn+1-2n+1)
=2n(bn+2n-2n+1)
=2n(bn-2n)
=…
=2n(b1-2)
=-2n<0,
所以bn・bn+2<b2n+1