如图,某市郊外景区内一条笔直的公路a经过三个景点A,B,C.景区管委会又开发了风景优美的景点D.经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上.已知AB=5km.
(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长.(结果精确到0.1km)
(2)求景点C与景点D之间的距离.(结果精确到0.1km)
如图,某市郊外景区内一条笔直的公路a经过三个景点A,B,C.景区管委会又开发了风景优美的景点D.经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上.已知AB=5km.
(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长.(结果精确到0.1km)
(2)求景点C与景点D之间的距离.(结果精确到0.1km)
考点: 解三角形的实际应用.
专题: 应用题.
分析: (1)过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,求DE的问题就可以转化为求∠DBE的度数或三角函数值的问题.
(2)Rt△DCE中根据三角函数就可以求出CD的长.
解答: 解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F
在Rt△DAF中,∠ADF=30°,∴AF=AD=
×8=4,∴DF=
;
在Rt△ABF中,BF==3,∴BD=DF﹣BF=4
﹣3
sin∠ABF=,在Rt△DBE中,sin∠DBE=
,
∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD•sin∠DBE=
×(4
﹣3)=
≈3.1(km)
∴景点D向公路a修建的这条公路的长约是3.1km;
(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°
在Rt△DCE中,sin∠DCE=,∴DC=
≈4(km)
∴景点C与景点D之间的距离约为4km.
点评: 本题主要考查解直角三角形的条件,已知直角三角形的一个锐角和一边长,或已知两边长就可以求出另外的边和角.