设数列{an}满足a1=3,an+1=a
-2nan+2(n=1,2,3,…).
(1)求a2,a3,a4的值,并猜想数列{an}的通项公式(不需证明).
(2)记Sn为数列{an}的前n项和,试求使得Sn<2n成立的最小正整数n,并给出证明.
设数列{an}满足a1=3,an+1=a
-2nan+2(n=1,2,3,…).
(1)求a2,a3,a4的值,并猜想数列{an}的通项公式(不需证明).
(2)记Sn为数列{an}的前n项和,试求使得Sn<2n成立的最小正整数n,并给出证明.
(1)解:a2=a
-2a1+2=5,a3=a
-2×2a2+2=7,a4=a
-2×3a3+2=9,
猜想an=2n+1(n∈N+).
(2)证明:Sn=
=n2+2n(n∈N+),
使得Sn<2n成立的最小正整数n=6.
下证:当n≥6(n∈N+)时都有2n>n2+2n.
①当n=6时,26=64,62+2×6=48,64>48,命题成立.
②假设n=k(k≥6,k∈N+)时,2k>k2+2k成立,那么2k+1=2·2k>2(k2+2k)
=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1时,不等式成立;
由①②可得,对于所有的n≥6(n∈N+)
都有2n>n2+2n成立.