如下图,在正方体ABCD—A1B1C1D1中,M、N分别是A1A、AB上的点,若∠NMC1=90°,
如下图,在正方体ABCD—A
1B
1C1D
1中,M、N分别是A
1A、AB上的点,若∠NMC
1=90°,那么∠NMB
1的大小为( )

A.小于90° B.等于90° C.大于90° D.不能确定
解析:解决本问题的关键是辨析出直线MC
1、MB
1、MN的位置关系.
解:∵MB1、MN都在平面ABB1A1内,点C1不在平面ABB1A1内,
∴C1M是平面ABB1A1的斜线.
∵C1B1⊥平面ABB1A1,
∴MB1就是斜线C1M在平面ABB1A1上的射影.
∵∠NMC1=90°,即C1M⊥MN,
故由三垂线定理的逆定理知MB1⊥MN,
∴∠NMB1=90°,
∴应选B.
答案
:B