(本小题满分12分)设圆
过点P(0,2), 且在
轴上截得的弦RG的长为4.(Ⅰ)求圆心
的轨迹E的方程;(Ⅱ)过点
(0,1),作轨迹
的两条互相垂直的弦
,
,
设
、
的中点分别为
,
,试判断直线
是否过定点?并说明理由.
(本小题满分12分)设圆
过点P(0,2), 且在
轴上截得的弦RG的长为4.(Ⅰ)求圆心
的轨迹E的方程;(Ⅱ)过点
(0,1),作轨迹
的两条互相垂直的弦
,
,
设
、
的中点分别为
,
,试判断直线
是否过定点?并说明理由.
(Ⅰ)
(Ⅱ) ![]()
(Ⅰ)设圆心
的坐标为
,如图过圆心
作
轴于H,
则H为RG的中点,在
中,
(2分)
∵
∴
即
(5分)
(Ⅱ) 设
,![]()
直线AB的方程为
,联立
有:![]()
∴
,
∴点M的坐标为
. (8分)
同理可得:点
的坐标为
. (10分)
直线
的斜率为
,
其方程为
,整理得
,
不论
为何值,点
均满足方程,∴直线
恒过定点
(12分)