已知函数f(x)=loga,(a>0且a≠1).(Ⅰ)判定f(x)的单调性,并证明;(Ⅱ)设g(

已知函数f(x)=loga,(a>0且a≠1).

(Ⅰ)判定f(x)的单调性,并证明;

(Ⅱ)设g(x)=1+loga(x-1),若方程f(x)=g(x)有实根,求a的取值范围;

(Ⅲ)求函数h(x)=f(x)lna+ln(x+3)-在[4,6]上的最大值和最小值.

答案

解:(Ⅰ)由>0,得x<-3或x>3,

    任取x1<x2<-3.

    则f(x1)-f(x2)=loga-loga=loga.

∵(x1-3)(x2+3)-(x1+3)(x2-3)=10(x1-x2)<0,

    又(x1-3)(x2+3)>0且(x1+3)(x2-3)>0,

0<<1,

∴当a>1时,f(x1)-f(x2)<0,

∴f(x)单调递增,

    当0<a<1时,f(x1)-f(x2)>0,

∴f(x)单调递减.

(Ⅱ)若f(x)=g(x)有实根,即:loga =1+loga(x-1).

x>3.

∴即方程:=a(x-1)有大于3的实根.

a=(∵x>3)

=.

“=”当且仅当x-3=即当x=3+2时成立,∴a∈(0,).

(Ⅲ)h(x)=f(x)lna+ln(x+3)-=ln(x-3)-.

h′(x)=,由=0有x2-3x-4=0,解得x1=4;x2=-1(舍去).

    当x∈[4,6]时,h′(x)<0,h(x)单调递减;

    所以函数h(x)在[4,6]上的最小值为h(6)=ln3-4,最大值为h(4)=-2.

相关题目

如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为
如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为,圆与边相切于点.若,求的度数.
在2008年中央电视台中秋双语晚会上,经典昆曲《牡丹亭》“
在2008年中央电视台中秋双语晚会上,经典昆曲《牡丹亭》“惊梦”片断与现代芭蕾结合,给传统艺术注入现代活力,给观众古典、时尚的全新观影感受
Mr. Johnson lived in the woods with his wife and children. He owned __61 __farm
Mr. Johnson lived in the woods with his wife and children. He owned __61 __farm,which looked almost abandoned.__62 __(lucky),he also had a cow which produced milk every day. He sold  or excha
下列各组物质,要借助酸碱指示剂才能判断反应发生的是(
下列各组物质,要借助酸碱指示剂才能判断反应发生的是( ) A.石灰石与盐酸 B.Fe2O3+HCl C.Ba(OH)2+H2SO4   D.NaOH+HCl
水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带
水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度(指缠绕中将
过两点(2,5),(2,-5)的直线方程是( ) A.x=5          
过两点(2,5),(2,-5)的直线方程是( ) A.x=5               B.y=2 C.x=2                                 D.x+y=2
Sometimes people come into your life and you know at once that they were sure to
Sometimes people come into your life and you know at once that they were sure to be there. They serve some sort of purpose, teach you a lesson or help find out who you are or who you want to become. Y
《庄子·让王》:“日出而作,日入而息,逍遥于天地之间而
《庄子·让王》:“日出而作,日入而息,逍遥于天地之间而心意自得。”这句话                                               

最新题目