已知x1,x2(x1<x2)是函数f(x)=ex+ln(x+1)-ax(a∈R)的两个极值点.
(1)求a的取值范围;
(2)证明:f(x2)-f(x1)<2ln a.
已知x1,x2(x1<x2)是函数f(x)=ex+ln(x+1)-ax(a∈R)的两个极值点.
(1)求a的取值范围;
(2)证明:f(x2)-f(x1)<2ln a.
解(1)由题意得f'(x)=ex+-a,x>-1,令g(x)=ex+
-a,x>-1,则g'(x)=ex-
,
令h(x)=ex-,x>-1,则h'(x)=ex+
>0,
∴h(x)在(-1,+∞)上递增,且h(0)=0,
当x∈(-1,0)时,g'(x)=h(x)<0,g(x)递减;
当x∈(0,+∞)时,g'(x)=h(x)>0,g(x)递增,
∴g(x)≥g(0)=2-a.
①当a≤2时,f'(x)=g(x)≥g(0)=2-a≥0,f(x)在(-1,+∞)递增,此时无极值;
②当a>2时,∵g-1
=
>0,g(0)=2-a<0,
∴∃x1∈-1,0
,g(x1)=0,
当x∈(-1,x1)时,g(x)=f'(x)>0,f(x)递增;
当x∈(x1,0)时,g(x)=f'(x)<0,g(x)递减;
∴x=x1是f(x)的极大值点;
∵g(lna)=>0,g(0)=2-a<0,
∴∃x2∈(0,lna),g(x2)=0.
当x∈(0,x2)时,g(x)=f'(x)<0,f(x)递减;当x∈(x2,+∞)时,g(x)=f'(x)>0,f(x)递增,∴x=x2是f(x)的极小值点;
综上所述,a∈(2,+∞).
(2)证明由(1)得a∈(2,+∞),-1<x1<0<x2<lna,
且g(x1)=g(x2)=0,
∴x2-x1>0,<x1+1<1,1<x2+1<1+lna,
,
-a<0,
1<<a(1+lna)<a2,
∴f(x2)-f(x1)=+ln
-a(x2-x1)
=(x2-x1)-a
+ln
<lna2=2lna.