设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3},A⊆S,a1,a2,a3满足a1<a2<a3且a3-a2≤6,那么满足条件的集合A的个数为( )
A.84 B.83 C.78 D.76
设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3},A⊆S,a1,a2,a3满足a1<a2<a3且a3-a2≤6,那么满足条件的集合A的个数为( )
A.84 B.83 C.78 D.76
B
由题意知当a3=9时,a2=3,a2=4,a2=5,a2=6,a2=7,a2=8,其对应的a1可以有2+3+4+5+6+7=27种,当a3=8时a2=2,3,4,5,6,7,对应的a1有1+2+3+4+5+6=21种,当a3=7时,a2=2,3,4,5,6,对应的a1有1+2+3+4+5=15种,依此类推得满足条件的集合A的个数为27+21+15+10+6+3+1=83种