已知函数f(x)=ax3+bx2的图象过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
已知函数f(x)=ax3+bx2的图象过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
解:(1)∵f(x)=ax3+bx2的图象经过点M(1,4),
∴a+b=4.①
f′(x)=3ax2+2bx,
则f′(1)=3a+2b.
由已知得f′(1)·=-1,
即3a+2b=9.②
由①②,得a=1,b=3.
(2)f(x)=x3+3x2,f′(x)=3x2+6x,
令f′(x)=3x2+6x≥0,
得x≥0或x≤-2,
故由f(x)在[m,m+1]上单调递增,得[m,m+1]⊆[0,+∞)或[m,m+1]⊆(-∞,-2],
∴m≥0或m+1≤-2,
即m≥0或m≤-3.
∴m的取值范围为(-∞,-3]∪[0,+∞).