已知向量m=(sinωx+cosωx,cosωx),n=(cosωx-sinωx,2sinωx),其中ω>0,函数f(x)=m·n,若f(x)相邻两对称轴间的距离为
(1)求ω的值,并求f(x)的最大值及相应x的集合;
(2)在△ABC中,a、b、c分别是A、B、C所对的边,△ABC的面积S=5,b=4,f(A)=1,求边a的长.
已知向量m=(sinωx+cosωx,cosωx),n=(cosωx-sinωx,2sinωx),其中ω>0,函数f(x)=m·n,若f(x)相邻两对称轴间的距离为
(1)求ω的值,并求f(x)的最大值及相应x的集合;
(2)在△ABC中,a、b、c分别是A、B、C所对的边,△ABC的面积S=5,b=4,f(A)=1,求边a的长.
(1)f(x)=cos2ωx-sin2ωx+2sinωxcosωx
=cos2ωx+sin2ωx=2sin
,
由题意可得T=π,∴ω=1,
∴f(x)=2sin
∴A=
,S=
bcsin
=5
,∴c=5,
由余弦定理得:a2=16+25-2×4×5cos=21,
∴a=.