在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向
在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1.
②请直接写出AC1 与BD1的位置关系.
(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=k BD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.
(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.

请直接写出k的值和 的值.


解:
(1)①证明:
∵四边形ABCD是正方形
∴AC=BD,OC=OA=
AC,OD=OB=
BD
∴OC=OA=OD=OB,
∵△C1OD1由△COD绕点O旋转得到
∴O C1= OC,O D1=OD,∠CO C1=∠DO D1
∴O C1= O D1 ∠AO C1=∠BO D1
∴△AO C1≌△BOD1
②AC1⊥BD1
(2)AC
1⊥BD1
理由如下:∵四边形ABCD是菱形
∴OC=OA=
AC,OD=OB=
BD,AC⊥BD
∵△C1OD1由△COD绕点O旋转得到
∴O C1= OC,O D1=OD,∠CO C1=∠DO D1
∴O C1=OA ,O D1=OB,∠AO C1=∠BO D1
∴
∴
∴△AO C1∽△BOD1 ∴∠O AC1= ∠OB D1
又∵∠AOB=90°
∴∠O AB+∠ABP+∠OB D1=90°
∴∠O AB+∠ABP+∠O AC1=90°
∴∠APB=90°
AC1⊥BD1
∵△AO C1∽△BOD1
∴
∴
(3)


