阅读理解并解答问题
如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.
(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;
(2)写出一组不同于3、4、5的勾股数;
(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.
阅读理解并解答问题
如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.
(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;
(2)写出一组不同于3、4、5的勾股数;
(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.
【考点】勾股数.
【分析】(1)直接利用勾股数的定义去验证即可;
(2)根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,即可写出一组勾股数;
(3)得到a2+b2=c2即可得到这是一组勾股数.
【解答】解:(1)∵3、4、5是正整数,且32+42=52,
∴3、4、5是一组勾股数;
(2)∵122+162=202,且12,16,20都是正整数,
∴一组勾股数可以是12,16,20.答案不唯一;
(3)∵m表示大于1的整数,
∴由a=2m,b=m2﹣1,c=m2+1得到a、b、c均为正整数;
又∵a2+b2=(2m)2+(m2﹣1)2=4m2+m4﹣2m2+1=m4+2m2+1,而c2=(m2+1)2=m4+2m2+1,
∴a2+b2=c2,
∴a、b、c为勾股数.
【点评】本题考查了勾股数的定义,欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和等于最长边的平方.注意本题答案不唯一.