
(Ⅰ)证明:MF是异面直线AB与PC的公垂线;
(Ⅱ)若PA=3AB,求二面角E—AB—D平面角的正弦值.

(Ⅰ)证明:MF是异面直线AB与PC的公垂线;
(Ⅱ)若PA=3AB,求二面角E—AB—D平面角的正弦值.
(19)
(I)证明:因PA⊥底面,有PA⊥AB,又知AB⊥AD,
故AB⊥面PAD,推得BA⊥AE,
又AM∥CD∥EF,且AM=EF,
证得AEFM是矩形,故AM⊥MF.
又因AE⊥PD,AE⊥CD,故AE⊥面PCD,
而MF∥AE,得MF⊥面PCD,
故MF⊥PC,
因此MF是AB与PC的公垂线.
Ⅱ解:因由(Ⅰ)知AE⊥AB,又AD⊥AB,故∠EAD是二面角E—AB—D的平面角.

设AB=a,则PA=3a.
因为Rt△ADE∽Rt△PDA,故∠EAD=∠APD
因此sinEAD=sinAPD=![]()