如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于( )
A.76° B.38° C.30° D.26°
如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于( )
A.76° B.38° C.30° D.26°
D【分析】先根据切线的性质得到∠OAB=90°,再利用互余计算出∠AOB=52°,然后根据圆周角定理求解.
【解答】解:∵AB是⊙O的切线,
∴OA⊥AB,
∴∠OAB=90°,
∵∠B=38°,
∴∠AOB=90°﹣38°=52°,
∴∠D=∠AOB=26°.
故选D.