设函数f(x)(x∈R)满足f(x﹣π)=f(x)+sinx,当0≤x≤π,f(x)=1时,则=( )
A. B.
C.
D.
设函数f(x)(x∈R)满足f(x﹣π)=f(x)+sinx,当0≤x≤π,f(x)=1时,则=( )
A. B.
C.
D.
C【考点】运用诱导公式化简求值;函数的值.
【分析】利用条件以及诱导公式,求得要求式子的值.
【解答】解:∵f(x﹣π)=f(x)+sinx,当0≤x≤π,f(x)=1时,
则=f(﹣
﹣π)=f(﹣
)+sin(﹣
)=f(﹣
﹣π)+sin(﹣
)
=f(﹣)+sin(﹣
)+sin(﹣
)=f(
﹣π)+sin(﹣
)﹣sin
=f()+sin
+sin(﹣
)+sin
=1+
﹣
+
=
,
故选:C.
【点评】本题主要考查新定义,诱导公式的应用,属于基础题.