已知f1(x)=sinx+cosx,记f2(x)=f'1(x),f3(x)=f'2 (x),…,fn(x)=f'n-1(x)(n∈N*且n≥2),则f1+f2
+…+f2 017
= .
已知f1(x)=sinx+cosx,记f2(x)=f'1(x),f3(x)=f'2 (x),…,fn(x)=f'n-1(x)(n∈N*且n≥2),则f1+f2
+…+f2 017
= .
1 【解析】f2(x)=f'1(x)=cosx-sinx,f3(x)=f'2(x)=-sinx-cosx,f4(x)=f'3(x)=sinx-cosx,f5(x)=f'4(x)=sinx+cosx,故周期为4,前四项和为0,所以原式=f1=sin
+cos
=1.