(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数θ,函数f(x)在区间(
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数θ,函数f(x)在区间(
本小题主要考查运用导数研究函数的单调性及极值、解不等式等基础知识,考查综合分析和解决问题的能力,以及分类讨论的数学思想方法.
(Ⅰ)解:当cosθ=0时,f(x)=4x3,则f(x)在(-∞,+∞)内是增函数,故无极值.
(Ⅱ)解:f′(x)=12x2-6xcosθ,令f′(x)=0,得
x1=0,x2=![]()
由(Ⅰ),只需分下面两种情况讨论.
当cosθ>0时,随x的变化,f′(x)的符号及f(x)的变化情况如下表:

因此,函数f(x)在x=![]()
f(![]()
要使f(![]()
0<cosθ<![]()
由于0≤θ<2π,故
![]()
②当cosθ<0时,随x的变化,f′(x)的符号及f(x)的变化情况如下表:

因此,函数f(x)在x=0处取得极小值f(0),且
f(0)=![]()
若f(0)>0,且cosθ>0.矛盾.所以当cosθ<0时,f(x)的极小值不会大于零.
综上,要使函数f(x)在(-∞,+∞)内的极小值大于零,参数θ的取值范围为
![]()
(Ⅲ)解:由(Ⅱ)知,函数f(x)在区间(-∞,0)与(![]()
由题设,函数f(x)在(

由(Ⅱ),参数θ∈![]()
立,必有![]()
综上,解得a≤0或![]()
(-∞,0]∪[![]()