已知函数
有三个极值点。
(I)证明:
;
(II)若存在实数c,使函数
在区间
上单调递减,求
的取值范围。
已知函数
有三个极值点。
(I)证明:
;
(II)若存在实数c,使函数
在区间
上单调递减,求
的取值范围。
(1)同解析;(2)
的取值范围是
.
解:(I)因为函数
有三个极值点,
所以
有三个互异的实根.
设
则![]()
当
时,
在
上为增函数;
当
时,
在
上为减函数;
当
时,
在
上为增函数;
所以函数
在
时取极大值,在
时取极小值.
当
或
时,
最多只有两个不同实根.
因为
有三个不同实根, 所以
且
.
即
,且
,
解得
且
故
.
(II)由(I)的证明可知,当
时,
有三个极值点.
不妨设为
(
),则![]()
所以
的单调递减区间是
,![]()
若
在区间
上单调递减,
则![]()
, 或![]()
,
若![]()
,则
.由(I)知,
,于是![]()
若![]()
,则
且
.由(I)知,![]()
又
当
时,
;
当
时,
.
因此, 当
时,
所以
且![]()
即
故
或
反之, 当
或
时,
总可找到
使函数
在区间
上单调递减.
综上所述,
的取值范围是
.