(本题满分15分)如图,已知直线
与抛物线
和圆
都相切,
是
的焦点.
(1)求与
的值;
(2)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
为邻边作平行四边形
,证明:点
在一条定直线上;
(3)在(2)的条件下,记点所在的定直线为
,直线
与
轴交点为
,连接
交抛物线
于
两点,求
的面积
的取值范围.
(本题满分15分)如图,已知直线
与抛物线
和圆
都相切,
是
的焦点.
(1)求与
的值;
(2)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
为邻边作平行四边形
,证明:点
在一条定直线上;
(3)在(2)的条件下,记点所在的定直线为
,直线
与
轴交点为
,连接
交抛物线
于
两点,求
的面积
的取值范围.
(1) ,
……4分
(2)设 则
……6分
因为 AFMB为平行四边形,所以AB中点与MF中点重合,可得:
因此,点M所在的直线方程为: ……9分
(3),带入抛物线方程
得:
……12分
……15分