
(1)证明AC⊥NB;
(2)若∠ACB=60°,求NB与平面ABC所成角的余弦值.

(1)证明AC⊥NB;
(2)若∠ACB=60°,求NB与平面ABC所成角的余弦值.
解:如图建立空间直角坐标系M—xyz,令MN=1,

则有A(-1,0,0),B(1,0,0),N(0,1,0).
(1)证明:∵MN是l1、l2的公垂线.l2⊥l1,
∴l2⊥平面ABN.
∴l2平行于z轴
故可设C(0,1,m)
于是
=(1,1,m),
=(1,-1,0),
∵
·
=1+(-1)+0=0,∴AC⊥NB.
(2)解:∵
=(1,1,m),
=(-1,1,m).
∴|
|=|
|,又已知∠ACD=60°,
∴△ABC为正三角形,AC=BC=AB=2.在Rt△CNB中,NB=
,可得NC=
,故C(0,1,
).连结MC,作NH⊥MC于H,设H(0,λ,
λ)(λ>0).
∴
=(0,1-λ,-
λ),
=(0,1,
),
∵
·
=1-λ-2λ=0,
∴λ=
.
∴H(0,
,
),可得HN=(0,
,-
),连结BH,则BH=(-1,
,
).
∵
·
=0+
-
=0,
∴
⊥
.
又MC∩BH=H,
∴HN⊥平面ABC,∠NBH为NB与平面ABC所成的角.又
=(-1,1,0),
∴cos∠NBH=
=
=
.