求证:(1)2<an<3;
(2)an+1-2<
(an-2);
(3)an-2<(
)2n-1.
求证:(1)2<an<3;
(2)an+1-2<
(an-2);
(3)an-2<(
)2n-1.
证明:(1)用数学归纳法证明.
∵2<a1=
<3,
∴n=1时,不等式成立.
假设当n=k时命题成立,即有2<ak<3.
当n=k+1时,
ak+1=
ak+
>2
=2(ak>2).
又
ak<
,
<1,
∴ak+1=
ak+
<1+
<3.
∴2<ak+1<3.
当n=k+1时,不等式成立.
由上可知不等式2<ak<3对任意正整数都成立.
(2)an+1-2=
an+
-2=
(an-2)2.
∵2<an<3,0<an-2<1,
∴an+1-2<
<
=
(an-2).
(3)由(2)知an-2<
(an-1-2)<
(
)2(an-2-2)<…<(
)n-1(a1-2)
=
(
)n-1=(
)2n-1,∴问题得证.