(1)求证:△CDE∽△FAE;
(2)若E是AD的中点,且BC=2 CD时,求证:∠F=∠BCF.
证明:(1)∵AB∥CD,∴∠DCF=∠F,∠D=∠EAF.∴△CDE∽△FAE.
(2)∵E是AD的中点,
∴DE=AE.
又∵△CDE∽△FAE,
∴.
∴CD=AF.∵AB=CD,
∴AB=CD=AF.∴BF=2CD.
又∵BC=2CD,∴BC=BF.∴∠F=∠BCF.