如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4
如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4
C解:(1)∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,
∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,
又∵MA⊥MD,
∴∠AMD=90°,
∴∠BMC=360°﹣60°﹣60°﹣90°=150°,
又∵BM=CM,
∴∠MBC=∠MCB=15°;
(2)∵AM⊥DM,
∴∠AMD=90°,
又∵AM=DM,
∴∠MDA=∠MAD=45°,
∴∠ADC=45°+60°=105°,
∠ABC=60°+15°=75°,
∴∠ADC+∠ABC=180°;
(3)延长BM交CD于N,
∵∠NMC是△MBC的外角,
∴∠NMC=15°+15°=30°,
∴BM所在的直线是△CDM的角平分线,
又∵CM=DM,
∴BM所在的直线垂直平分CD;
(4)根据(2)同理可求∠DAB=105°,∠BCD=75°,
∴∠DAB+∠ABC=180°,
∴AD∥BC,
又∵AB=CD,
∴四边形ABCD是等腰梯形,
∴四边形ABCD是轴对称图形.
故(2)(3)(4)正确.
故选:C.