如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角的平分线CF相交于点F

如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:

1.图中有几个等腰三角形?请说明理由 。

2.BD,CE,DE之间存在着怎样的数量关系?请说明.

 

 

答案

 

1.有2个等腰三角形,分别是△BDF,△ECF                         

理由如下:∵  BF 平分∠ABC  ∴∠ABF=∠CBF                                        ∵ DF∥BC    ∴∠DFB=∠CBF  ∴∠ABF=∠DFB  ∴BD=DF    即△BDF是等腰三角形

同理,△ECF是等腰三角形                               

2.DF=DE+EC                                                     

理由如下 :(略)

解析:略

 

相关题目

(2008年新乡模拟)豌豆花的颜色受两对等位基因E/e与F/f所控
(2008年新乡模拟)豌豆花的颜色受两对等位基因E/e与F/f所控制,只有当E、F同时存在时才开紫花,否则开白花。下列选项中都符合以上条件的亲本组合
美籍华人、史学家唐德刚在<<晚清七十年>>一书中,
美籍华人、史学家唐德刚在<<晚清七十年>>一书中,写道:“从秦国开始的我国史上的第一次社会政治大转型,发自商鞅,极盛于始皇,而完成
2011年1月18日,美国佛罗里达州向联邦法院递交了 反对奥巴马
2011年1月18日,美国佛罗里达州向联邦法院递交了 反对奥巴马总统已经签署的《医疗改革法案》议案,至此,全美共有 26 个州提起诉讼,成为美国历史
①我幼时,家对门有条胡同,又窄又长,九曲八折,望进去
①我幼时,家对门有条胡同,又窄又长,九曲八折,望进去深邃莫测。隔街是店铺集中的闹市,过往行人都以为这胡同通向那边闹市,是条难得的近道
二次函数的图象如图所示,则其对称轴方程是 *  ,方程的
二次函数的图象如图所示,则其对称轴方程是 *  ,方程的解是 *  .
下列有关叙述,正确的是 A.磷是脂肪、蛋白质、DNA不可缺少
下列有关叙述,正确的是 A.磷是脂肪、蛋白质、DNA不可缺少的成分 B.酶和核酸都是含有氮元素的大分子 C.肌肉细胞中含量最多的化合物是蛋白质 D.
一本史学著作说:“第一次世界大战还标志着曾在19世纪十分
一本史学著作说:“第一次世界大战还标志着曾在19世纪十分完全、十分反常地支配全球的欧洲的结束”对此理解正确的是 ①第一次世界大战成为一系
在创建卫生城市活动中,某小区居民全员参与共建文明小区
在创建卫生城市活动中,某小区居民全员参与共建文明小区。居民举止与社区文明的关系体现的哲学原理是 A.部分影响整体