(1)y=x4+3x2-6;
(2)y=6

(3)y=x(2x-1)(3x+2);
(4)y=xsinx+cosx.
(1)y=x4+3x2-6;
(2)y=6
(3)y=x(2x-1)(3x+2);
(4)y=xsinx+cosx.
分析:这些函数都是由基本初等函数经过四则运算得到的简单函数,求导时可直接利用求导法则和导数公式进行求导.
解:(1)y′=(x4+3x2-6)′
=(x4)′+(3x2)′-(6)′
=4x3+6x.
(2)y′=(6x
=(6x
=6×
=21x
(3)y′=[x(2x-1)(3x+2)]′
=[x(2x-1)]′(3x+2)+x(2x-1)(3x+2)′
=x′(2x-1)(3x+2)+x(2x-1)′(3x+2)+x(2x-1)(3x+2)′
=(2x-1)(3x+2)+2x(3x+2)+3x(2x-1)
=18x2+2x-2.
(4)y′=(xsinx+cosx)′
=(xsinx)′+(cosx)′
=x′·sinx+(sinx)′·x+(cosx)′
=sinx+xcosx-sinx
=xcosx.