如图1,Rt△ABC两直角边的边长为AC=1,BC=2.(1)如图2,⊙O与Rt△A

如图1,Rt△ABC两直角边的边长为AC=1,BC=2.
(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心O;(用尺规作图,保留作图痕迹,不写作法和证明)
(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为s,你认为能否确定s的最大值?若能,请你求出s的最大值;若不能,请你说明不能确定s的最大值的理由.

答案

解:(1)共2分.(标出了圆心,没有作图痕迹的评1分)看见垂足为Y(X)的一 条 垂 线 (或 者∠ABC的平分线)即评1分,
(2)①当⊙P与Rt△ABC的边 AB和BC相切时,由角平分线的性质,动点P是∠ABC的平分线BM上的点.
如图1,在∠ABC的平分线BM上任意确定点P1  (不为∠ABC的顶点),

∵ OX =BOsin∠ABM,  P1Z=BP1sin∠ABM.
当 BP1>BO 时 ,P1Z>OX,即P与B的距离越大,⊙P的面积越大.
这时,BM与AC的交点P是符合题意的、BP长度最大的点. 
(3分.此处没有证明和结论不影响后续评分)
如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上.

∴以P为圆心、PC为半径作圆,则⊙P与边CB相切于C,与边AB相切于E,
即这时的⊙P是符合题意的圆.(4分.此处没有证明和结论不影响后续评分)
这时⊙P的面积就是S的最大值.
∵∠A=∠A,∠BCA=∠AEP=90°,∴ Rt△ABC∽Rt△APE,  (5分)
.
∵AC=1,BC=2,∴AB=.
设PC=x,则PA=AC-PC=1-x,   PC=PE,
, ∴x= .  (6分)
②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则 

∴y= .   (7分)
③如图4,同理可得:当⊙P与Rt△ABC的边BC和AC相切时,

设PF=z,则, ∴z=.    (8分)
由①,②,③可知:∵  >2,∴ +2>+1>3,
∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大,
(或者:∵x= =2-4, y= = 5,
∴y-x=>0, ∴y>x. ∵z-y=>0)
2, (9分,没有过程直接得出酌情扣1分)
∴ z>y>x.  ∴⊙P的面积S的最大值为.    (10分)解析:

相关题目

元素X的最高价氧化物对应的水化物的化学式为HnXO2n-2,则其气
元素X的最高价氧化物对应的水化物的化学式为HnXO2n-2,则其气态氢化物中元素X的化合价为( ) A.5n-2       B.3n-12         C.3n-6       D.n-10
x2﹣3x+1=0.
x2﹣3x+1=0.
已知函数f(x)在定义域[a,b]上是单调函数,函数值域为[-3,5
已知函数f(x)在定义域[a,b]上是单调函数,函数值域为[-3,5],则以下说法正确的是(    )A.若f(a)f(b)<0,则存在x1∈[a,b],使f(x1)=0B.f(x)在区间[a,b]上有
阅读下面的文字,完成9-13题。(14分) 【甲】  口技 清 林
阅读下面的文字,完成9-13题。(14分) 【甲】  口技 清 林嗣环 京中有善口技者。会宾客大宴,于厅事之东北角,施八尺屏障,口技人坐屏障中,一桌
随着第一代农民工年龄的增大和逐步返回农村,新生代农民
随着第一代农民工年龄的增大和逐步返回农村,新生代农民工已经陆续进入城市并成为农民工的主体。因此,着力解决新生代农民工问题政府必须 ①履
如图8-3-12所示,一个密闭的气缸,被活塞分成体积相等的左
如图8-3-12所示,一个密闭的气缸,被活塞分成体积相等的左、右两室,气缸壁与活塞是不导热的;它们之间没有摩擦,两室中气体的温度相等,现利用
过氧化钙晶体﹝CaO2·8H2O﹞较稳定,呈白色,微溶于水,广泛
过氧化钙晶体﹝CaO2·8H2O﹞较稳定,呈白色,微溶于水,广泛应用于环境杀菌、消毒。以贝壳为原料制备CaO2流程如下: (1)气体X是CO2,其名称是    
下列计算正确的是(    )      A.        B.     
下列计算正确的是(    )      A.        B.          C.             D.

最新题目