如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH。
(Ⅰ)求证:AB//GH;
(Ⅱ)求二面角D-GH-E的余弦值 .
如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH。
(Ⅰ)求证:AB//GH;
(Ⅱ)求二面角D-GH-E的余弦值 .
解答:(1)因为C、D为中点,所以CD//AB
同理:EF//AB,所以EF//CD,EF平面EFQ,
所以CD//平面EFQ,又CD平面PCD,所以
CD//GH,又AB//CD,所以AB//GH.
(2)由AQ=2BD,D为AQ的中点可得,△ABQ为直角三角形,以B为坐标原点,以BA、BC、BP为x、y、z轴建立空间直角坐标系,设AB=BP=BQ=2,可得平面GCD的一个法向量为,平面EFG的一个法向量为
,可得
,所以二面角D-GH-E的余弦值为