已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF。
求证:△ABC是等边三角形。
已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF。
求证:△ABC是等边三角形。
∵AB=AC,
∴∠B=∠C.
∵DE⊥AB,DF⊥BC
∴∠DEA=∠DFC=Rt∠
∴D为AC的中点,
∴DA=DC
又∴DF=DF
∴Rt△ADE≌Rt△CDF(HL)
∴∠A=∠C.
∴∠A=∠B=∠C.
∴△ABC是等边三角形.
【考点】全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定
【解析】【分析】根据AB=AC,可得出∠B=∠C.根据垂直的定义,可证得∠DEA=∠DFC,根据中点的定义可得出DA=DC,即可证明Rt△ADE≌Rt△CDF,就可得出∠A=∠C.从而可证得∠A=∠B=∠C,即可求证结论。