在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,求证:点C1,O,M共线.

在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,求证:点C1,O,M共线.

证明 如图所示,∵A1A∥C1C,
∴A1A,C1C确定平面A1C.
∵A1C⊂平面A1C,O∈A1C,
∴O∈平面A1C,而O=平面BDC1∩线A1C,∴O∈平面BDC1,
∴O在平面BDC1与平面A1C的交线上.
∵AC∩BD=M,
∴M∈平面BDC1,且M∈平面A1C,
∴平面BDC1∩平面A1C=C1M,
∴O∈C1M,即C1,O,M三点共线.