如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=
a(0<
≦1).
(Ⅰ)求证:对任意的![]()
(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求
的值。
如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=
a(0<
≦1).
(Ⅰ)求证:对任意的![]()
(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求
的值。
本小题主要考察空间直线与直线、直线与平面的位置关系和二面角等基础知识,考查空间想象能力、推理论证能力和运算求解能力。(满分12分)
(Ⅰ)证发1:连接BD,由底面是正方形可得AC
BD。
SD
平面ABCD,
BD是BE在平面ABCD上的射影,
由三垂线定理得AC
BE.
(II)解法1:
SD
平面ABCD,CD
平面ABCD,
SD
CD.
又底面ABCD是正方形,
CD
AD,又SD
AD=D,
CD
平面SAD。
过点D在平面SAD内做DF
AE于F,连接CF,则CF
AE,
故
CFD是二面角C-AE-D 的平面角,即
CFD=60°
在Rt△ADE中,
AD=
, DE=
, AE=![]()
。
于是,DF=![]()
在Rt△CDF中,由
cot60°=![]()

得
, 即
=3
, 解得
=![]()