已知命题p:方程x2+mx+1=0有两个不等的负根;
命题q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.
已知命题p:方程x2+mx+1=0有两个不等的负根;
命题q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.
解: 若方程x2+mx+1=0有两不等的负根,则解得m>2,
即命题p:m>2
若方程4x2+4(m-2)x+1=0无实根,
则Δ=16(m-2)2-16=16(m2-4m+3)<0
解得:1<m<3.即q:1<m<3.
因“p或q”为真,所以p、q至少有一为真,
又“p且q”为假,所以命题p、q至少有一为假,
因此,命题p、q应一真一假,即命题p为真,命题q为假或命题p为假,命题q为真.
∴ 解得:m≥3或1<m≤2.