若函数满足:集合
中至少存在三个不同的数构成等比数列,则称函数
是等比源函数.
(Ⅰ)判断下列函数:①;②
;③
中,哪些是等比源函数?(不需证明)
(Ⅱ)判断函数是否为等比源函数,并证明你的结论;
(Ⅲ)证明:,函数
都是等比源函数.
若函数满足:集合
中至少存在三个不同的数构成等比数列,则称函数
是等比源函数.
(Ⅰ)判断下列函数:①;②
;③
中,哪些是等比源函数?(不需证明)
(Ⅱ)判断函数是否为等比源函数,并证明你的结论;
(Ⅲ)证明:,函数
都是等比源函数.
解:(Ⅰ)①②③都是等比源函数.
(Ⅱ)函数不是等比源函数.
证明如下:
假设存在正整数且
,使得
成等比数列,
,整理得
,
等式两边同除以得
.
因为,所以等式左边为偶数,等式右边为奇数,
所以等式不可能成立,
所以假设不成立,说明函数不是等比源函数.
(Ⅲ)法1:
因为,都有
,
所以,数列
都是以
为首项公差为
的等差数列.
,
成等比数列,
因为,
,
所以,
所以,函数
都是等比源函数.
(Ⅲ)法2:
因为,都有
,
所以,数列
都是以
为首项公差为
的等差数列.
由,(其中
)可得
,整理得
,
令,则
,
所以,
所以,数列
中总存在三项
成等比数列.
所以,函数
都是等比源函数.