如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.

如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.

证明:∵四边形ABCD是正方形,
∴AB=AD,∠DAB=90°,
∵BF⊥AE,DG⊥AE,
∴∠AFB=∠AGD=∠ADG+∠DAG=90°,
∵∠DAG+∠BAF=90°,
∴∠ADG=∠BAF,
在△BAF和△ADG中,
∵
,
∴△BAF≌△ADG(AAS),
∴BF=AG,AF=DG,
∵AG=AF+FG,
∴BF=AG=DG+FG,
∴BF﹣DG=FG.
【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.