如图,在平面直角坐标系xOy中,抛物线与x轴交于A(1,0)、B(5,0)两点.
1.求抛物线的解析式和顶点C的坐标;
2.设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为(0°<
<90°)
①当等于多少度时,△CPQ是等腰三角形?
②设,求s与t之间的函数关系式.
如图,在平面直角坐标系xOy中,抛物线与x轴交于A(1,0)、B(5,0)两点.
1.求抛物线的解析式和顶点C的坐标;
2.设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为(0°<
<90°)
①当等于多少度时,△CPQ是等腰三角形?
②设,求s与t之间的函数关系式.
1.解:(1)根据题意,得 解得
∴=
∴顶点C的坐标为(3,2)
2.①∵CD=DB=AD=2,CD⊥AB, ∴∠DCB=∠CBD=45°.……………(4分)
ⅰ)若CQ=CP,则∠PCD=∠PCQ=22.5°.
∴当=22.5°时,△CPQ是等腰三角形.……………(5分)
ⅱ)若CQ=PQ,则∠CPQ=∠PCQ=45°,
此时点Q与D重合,点P与A重合.
∴当=45°时,△CPQ是等腰三角形.……………(6分)
ⅲ)若PC=PQ, ∠PCQ=∠PQC=45°,此时点Q与B重合,点P与D重合.
∴=0°,不合题意.
∴当=22.5°或45°时,△CPQ是等腰三角形.………(7分)
② 连接AC,∵AD=CD=2,CD⊥AB,∴∠ACD=∠CAD=,
AC= BC=……………(8分)
ⅰ)当时,∵∠ACQ=∠ACP+∠PCQ=∠ACP+45°.
∠BPC=∠ACP+∠CAD=∠ACP+45°.∴∠ACQ=∠BPC. 又∵∠CAQ=∠PBC=45°,
∴△ACQ∽△BPC.∴.∴AQ·BP=AC·BC=
×
=8……………(9分)
ⅱ)当时,同理可得AQ·BP=AC·BC=8 ∴
.
解析:略