如图:已知PA⊥⊙O所在的平面,AB是⊙O的直径,
C是异于A、B的⊙O上任意一点,过A作AE⊥PC于E ,
求证:AE⊥平面PBC。
如图:已知PA⊥⊙O所在的平面,AB是⊙O的直径,
C是异于A、B的⊙O上任意一点,过A作AE⊥PC于E ,
求证:AE⊥平面PBC。
证明:∵PA⊥平面ABC,∴PA⊥BC,
又∵AB是⊙O的直径,∴BC⊥AC
而PA∩AC=A,∴BC⊥平面PAC
又∵AE平面PAC,∴BC⊥AE
∵PC⊥AE且PC∩BC=C,∴AE⊥平面PBC。