(本小题共13分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q
为0.25,在B处的命中率为q
,该同学选择先在A处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
|  | 0 | 2 | 3 | 4 | 5 |
| p | 0.03 | P1 | P2 | P3 | P4 |
(1)求q
的值;
(2)求随机变量
的数学期望E
;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
(本小题共13分)
解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,
, P(B)= q
,
.
根据分布列知:
=0时
=0.03,所以
,q
=0.8.
(2)当
=2时, P1=
=0.75 q
(
)×2=1.5 q
(
)=0.24
当
=3时, P2 =
=0.01,
当
=4时, P3=
=0.48,
当
=5时, P4=
=0.24
所以随机变量
的分布列为
|  | 0 | 2 | 3 | 4 | 5 |
| p | 0.03 | 0.24 | 0.01 | 0.48 | 0.24 |
随机变量
的数学期望
(3)该同学选择都在B处投篮得分超过3分的概率为

;
该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.
由此看来该同学选择都在B处投篮得分超过3分的概率大.
【命题立意】:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.